Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            The surge in advanced manufacturing techniques has led to a paradigm shift in the realm of material design from developing completely new chemistry to tailoring geometry within existing materials. Kirigami, evolved from a traditional cultural and artistic craft of cutting and folding, has emerged as a powerful framework that endows simple 2D sheets with unique mechanical, thermal, optical, and acoustic properties, as well as shape‐shifting capabilities. Given its flexibility, versatility, and ease of fabrication, there are significant efforts in developing kirigami algorithms to create various architectured materials for a wide range of applications. This review summarizes the fundamental mechanisms that govern the transformation of kirigami structures and elucidates how these mechanisms contribute to their distinctive properties, including high stretchability and adaptability, tunable surface topography, programmable shape morphing, and characteristics of bistability and multistability. It then highlights several promising applications enabled by the unique kirigami designs and concludes with an outlook on the future challenges and perspectives of kirigami‐inspired metamaterials toward real‐world applications.more » « less
- 
            We introduce a class of ultra-light and ultra-stiff sandwich panels designed for use in photophoretic levitation applications and investigate their mechanical behavior using both computational analyses and micro-mechanical testing. The sandwich panels consist of two face sheets connected with a core that consists of hollow cylindrical ligaments arranged in a honeycomb-based hexagonal pattern. Computational modeling shows that the panels have superior bending stiffness and buckling resistance compared to similar panels with a basketweave core, and that their behavior is well described by Uflyand-Mindlin plate theory. By optimizing the ratio of the face sheet thickness to the ligament wall thickness, panels maybe obtained that have a bending stiffness that is more than five orders of magnitude larger than that of a solid plate with the same area density. Using a scalable microfabrication process, we demonstrate that panels as large as 3 × 3 cm2 with a volumetric density of 20 kg/m3 and corresponding area density of 2 g/m2 can be made in a few hours. Micro-mechanical testing of the panels is performed by deflecting microfabricated cantilevered panels using a nanoindenter. The experimentally measured bending stiffness of the cantilevered panels is in very good agreement with the computational results, demonstrating exquisite control over the dimensions, form, and properties of the microfabricated panels.more » « less
- 
            Abstract Maxwell lattices possess distinct topological states that feature mechanically polarized edge behaviors and asymmetric dynamic responses protected by the topology of their phonon bands. Until now, demonstrations of non‐trivial topological behaviors from Maxwell lattices have been limited to fixed configurations or have achieved reconfigurability using mechanical linkages. Here, a monolithic transformable topological mechanical metamaterial is introduced in the form of a generalized kagome lattice made from a shape memory polymer (SMP). It is capable of reversibly exploring topologically distinct phases of the non‐trivial phase space via a kinematic strategy that converts sparse mechanical inputs at free edge pairs into a biaxial, global transformation that switches its topological state. All configurations are stable in the absence of confinement or a continuous mechanical input. Its topologically‐protected, polarized mechanical edge stiffness is robust against broken hinges or conformational defects. More importantly, it shows that the phase transition of SMPs that modulate chain mobility, can effectively shield a dynamic metamaterial's topological response from its own kinematic stress history, referred to as “stress caching”. This work provides a blueprint for monolithic transformable mechanical metamaterials with topological mechanical behavior that is robust against defects and disorder while circumventing their vulnerability to stored elastic energy, which will find applications in switchable acoustic diodes and tunable vibration dampers or isolators.more » « less
- 
            Abstract Direct ink writing of liquid crystal elastomers (LCEs) offers a new opportunity to program geometries for a wide variety of shape transformation modes toward applications such as soft robotics. So far, most 3D‐printed LCEs are thermally actuated. Herein, a 3D‐printable photoresponsive gold nanorod (AuNR)/LCE composite ink is developed, allowing for photothermal actuation of the 3D‐printed structures with AuNR as low as 0.1 wt.%. It is shown that the printed filament has a superior photothermal response with 27% actuation strain upon irradiation to near‐infrared (NIR) light (808 nm) at 1.4 W cm−2(corresponding to 160 °C) under optimal printing conditions. The 3D‐printed composite structures can be globally or locally actuated into different shapes by controlling the area exposed to the NIR laser. Taking advantage of the customized structures enabled by 3D printing and the ability to control locally exposed light, a light‐responsive soft robot is demonstrated that can climb on a ratchet surface with a maximum speed of 0.284 mm s−1(on a flat surface) and 0.216 mm s−1(on a 30° titled surface), respectively, corresponding to 0.428 and 0.324 body length per min, respectively, with a large body mass (0.23 g) and thickness (1 mm).more » « less
- 
            Abstract Across fields of science, researchers have increasingly focused on designing soft devices that can shape‐morph to achieve functionality. However, identifying a rest shape that leads to a target 3D shape upon actuation is a non‐trivial task that involves inverse design capabilities. In this study, a simple and efficient platform is presented to design pre‐programmed 3D shapes starting from 2D planar composite membranes. By training neural networks with a small set of finite element simulations, the authors are able to obtain both the optimal design for a pixelated 2D elastomeric membrane and the inflation pressure required for it to morph into a target shape. The proposed method has potential to be employed at multiple scales and for different applications. As an example, it is shown how these inversely designed membranes can be used for mechanotherapy applications, by stimulating certain areas while avoiding prescribed locations.more » « less
- 
            Abstract Kirigami, the Japanese art of paper cutting, has recently enabled the design of stretchable mechanical metamaterials that can be easily realized by embedding arrays of periodic cuts into an elastic sheet. Here, kirigami principles are exploited to design inflatables that can mimic target shapes upon pressurization. The system comprises a kirigami sheet embedded into an unstructured elastomeric membrane. First, it is shown that the inflated shape can be controlled by tuning the geometric parameters of the kirigami pattern. Then, by applying a simple optimization algorithm, the best parameters that enable the kirigami inflatables to transform into a family of target shapes at a given pressure are identified. Furthermore, thanks to the tessellated nature of the kirigami, it is shown that we can selectively manipulate the parameters of the single units to allow the reproduction of features at different scales and ultimately enable a more accurate mimicking of the target.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
